skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Muyllaert, Eddy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Using the Zwicky Transient Facility, in 2021 February we identified the first known outburst of the black hole X-ray transient XTE J1859+226 since its discovery in 1999. The outburst was visible at X-ray, UV, and optical wavelengths for less than 20 days, substantially shorter than its full outburst of 320 days in 1999, and the observed peak luminosity was 2 orders of magnitude lower. Its peak bolometric luminosity was only 2 × 1035erg s−1, implying an Eddington fraction of about 3 × 10−4. The source remained in the hard spectral state throughout the outburst. From optical spectroscopy measurements we estimate an outer disk radius of 1011cm. The low observed X-ray luminosity is not sufficient to irradiate the entire disk, but we observe a surprising exponential decline in the X-ray light curve. These observations highlight the potential of optical and infrared synoptic surveys to discover low-luminosity activity from X-ray transients. 
    more » « less
  2. Abstract Continuing the project described by Kato et al. (2009, PASJ, 61, S395), we collected times of superhump maxima for 102 SU UMa-type dwarf novae observed mainly during the 2017 season, and characterized these objects. WZ Sge-type stars identified in this study are PT And, ASASSN-17ei, ASASSN-17el, ASASSN-17es, ASASSN-17fn, ASASSN-17fz, ASASSN-17hw, ASASSN-17kd, ASASSN-17la, PNV J20205397$$+$$2508145, and TCP J00332502$$-$$3518565. We obtained new mass ratios for seven objects using growing superhumps (stage A). ASASSN-17gf is an EI Psc-type object below the period minimum. CRTS J080941.3$$+$$171528 and DDE 51 are objects in the period gap, and both showed a long-lasting phase of stage A superhumps. We also summarize the recent advances in understanding of SU UMa-type and WZ Sge-type dwarf novae. 
    more » « less